MAT_EXPLOSIVE_HVRB
FE
FE
Material properties
Beta command
This command is in the beta stage and the format may change over time.
*MAT_EXPLOSIVE_HVRB
"Optional title"
mid, $\rho_0$, $E$, $\nu$
$\sigma_0$, $Q$, $C$, $S$, $\Gamma$
$A$, $B$, $R_1$, $R_2$, $\omega$, $e_0$
$p_I$, $p_R$, $Z$, $M$, $X$, $\tau_R$
"Optional title"
mid, $\rho_0$, $E$, $\nu$
$\sigma_0$, $Q$, $C$, $S$, $\Gamma$
$A$, $B$, $R_1$, $R_2$, $\omega$, $e_0$
$p_I$, $p_R$, $Z$, $M$, $X$, $\tau_R$
Parameter definition
Variable
Description
mid
Unique material identification number
$\rho_0$
Initial density
$E$
Young's modulus
$\nu$
Poisson's ratio
$\sigma_0$
Yield stress
$Q$
Voce hardening coefficient
$C$
Voce hardening coefficient
$S$
Gruneisen EOS parameter
$\Gamma$
Gruneisen EOS parameter
$A$
JWL coefficient
$B$
JWL coefficient
$R_1$
JWL coefficient
$R_2$
JWL coefficient
$\omega$
JWL coefficient
$e_0$
Internal energy per unit volume
$p_I$
Deflagration pressure threshold
$p_R$
Deflagration pressure parameter
$Z$
Deflagration exponent
$M$
Deflagration exponent
$X$
Deflagration exponent
$\tau_R$
Deflagration time parameter
Description
This is the History Variable Reactive Burn (HVRB) model, for predicting initiation of explosive materials. It is currently only implemented for Finite Elements.
The material pressure $p$ is defined as:
$\displaystyle{ p = (1 - F) \cdot p_s + F \cdot p_g }$
where $0 \leq F \leq 1$ is burn fraction, $p_s$ is the pressure of the solid material and $p_g$ is the pressure of generated gas product.
$\displaystyle{ p_s = \frac{K \eta}{(1-S \eta)^2} \cdot \left( 1 - \frac{\Gamma \eta}{2} \right) + \Gamma \rho_0 e }$
$\displaystyle{ \eta = 1 - \rho_0 / \rho }$
where $K$ is the bulk modulus, $\rho_0$ is the initial density and $\rho$ is the current density.
$\displaystyle{ p_g = A \left( 1 - \frac{\omega}{R_1 V} \right) \mathrm{e}^{-R_1 V} + B \left( 1 - \frac{\omega}{R_2 V} \right) \mathrm{e}^{-R_2 V} + \omega e}$
$\displaystyle{ V = \rho_0 / \rho}$
The burn fraction $F$ is defined according to:
$\displaystyle{ F = 1 - \left(1 - \mathrm{min} \left( 1, \frac{\phi^M}{X} \right) \right)^X}$
$\displaystyle{ \phi(t) = \frac{1}{\tau_R} \int_0^t \left( \frac{\mathrm{max}(0, p - p_I)}{p_R} \right)^Z \mathrm{d}\tau }$
The combustion process generates thermal energy, and the energy release rate per unit volume is:
$\displaystyle{ \frac{\partial e}{\partial F} = \frac{\rho}{\rho_0} e_0 }$
The solid material is elasto-plastic with (J2) flow stress:
$\displaystyle{\sigma_y = \sigma_0 + Q \left( 1 - \mathrm{exp} (-C \varepsilon_p)\right)}$