MAT_EXPLOSIVE_JWL
FE
CFD

Material properties

*MAT_EXPLOSIVE_JWL
"Optional title"
mid, $\rho_0$, $E$, $\nu$
$\sigma_0$, $Q$, $C$, $S$, $\Gamma$
$A$, $B$, $R_1$, $R_2$, $\omega$, $e_0$, $D$, $t_b$

Parameter definition

Variable
Description
mid
Unique material identification number
$\rho_0$
Initial density
$E$
Young's modulus
$\nu$
Poisson's ratio
$\sigma_0$
Yield stress
$Q$
Voce hardening coefficient
$C$
Voce hardening coefficient
$S$
Gruneisen EOS parameter
$\Gamma$
Gruneisen EOS parameter
$A$
JWL coefficient
$B$
JWL coefficient
$R_1$
JWL coefficient
$R_2$
JWL coefficient
$\omega$
JWL coefficient
$e_0$
Internal energy per unit volume
$D$
Detonation velocity
$t_b$
Burn time

Description

This is a model for explosive materials. It is currently implemented for Finite Elements and CFD. However, only the Finite Element version uses the undetonated properties. The pressure in the undetonated material is defines as:

$\displaystyle{ p = \frac{K \eta}{(1-S \eta)^2} \cdot \left( 1 - \frac{\Gamma \eta}{2} \right) + \Gamma \rho_0 e }$
$\displaystyle{ \eta = 1 - \rho_0 / \rho }$

where $K$ is the bulk modulus, $\rho_0$ is the initial density and $\rho$ is the current density. Undetonated material is treated as elasto-plastic with a (J2) flow stress, according to:

$\displaystyle{\sigma_y = \sigma_0 + Q \left( 1 - \mathrm{exp} (-C \varepsilon_p)\right)}$

At detonation the chemical energy $e_0$ is released and all shear stresses are set to $0$. The pressure $p$ is defined accoding to the JWL equation-of-state:

$\displaystyle{ p = A \left( 1 - \frac{\omega}{R_1 V} \right) \mathrm{e}^{-R_1 V} + B \left( 1 - \frac{\omega}{R_2 V} \right) \mathrm{e}^{-R_2 V} + \omega e}$

where $V$ is the relative volume:

$\displaystyle{ V = \rho_0 / \rho}$

The model uses a programmed burn assumption and at least one detonation point must be defined with the command DETONATION.

Example

Contact detonation

A C4 charge modelled with Finite Elements and MAT_EXPLOSIVE_JWL. Quadratic elements are well-suited for this purpose, if combined with the command LOAD_ELEMENT_SMOOTHING. The smoothing command is essential for mitigating spurious high-frequency oscillations on element level. A programmed burn approach is employed, with the ignition point defined using the command DETONATION.

*UNIT_SYSTEM SI *PARAMETER Rp = 0.25, "Plate radius" hp = 0.01, "Plate thickness" Rc = 0.04, "Charge radius" hc = 0.02, "Charge height" wf = 0.05, "Frame width" tend = 5.0e-4, "Termination time" # # --- TIME --- # *TIME [%tend] # # --- OUTPUT --- # *OUTPUT_SENSOR "Plate center" 1, 1, 0, 0, 0 # # --- MESH --- # *COMPONENT_CYLINDER "Plate" 1, 1, 1, 10, 0, 2 0, 0, [-%hp], 0, 0, 0, [%Rp] *COMPONENT_PIPE "Frame" 2, 2, 1, 12, 2, 0, 90.0 0, 0, [-2*%hp], 0, 0, [-%hp], [%Rp-%wf], [%Rp] *COMPONENT_CYLINDER "Charge" 3, 3, 4, 8, 0, 2 0, 0, 0, 0, 0, [%hc], [%Rc] *CHANGE_P-ORDER PS, 12, 3 *SET_PART "Plate and frame" 12 1, 2 *CHANGE_P-ORDER "Charge" P, 3, 2 *SMOOTH_MESH ALL, 0, 45.0 # # --- SMOOTHING --- # *LOAD_ELEMENT_SMOOTHING "Charge" 1 P, 3, 1.0e-6 # # --- MATERIAL --- # *MAT_METAL "Steel" 1, 7800.0, 210.0e9, 0.3 1 *FUNCTION 1 1.0e9 + 1.0e9*epsp^0.3 *MAT_RIGID "Frame" 2, 7800.0 *MAT_EXPLOSIVE_JWL "C4" 3, 1601.0, 5.0e9, 0.2 1.0e7, 1.0e7, 5.0 609.8e9, 12.95e9, 4.5, 1.4, 0.25, 9.0e9, 8193.0 *DETONATION 1 P, 3, 0, 0, [%hc], 0 # # --- PART --- # *PART "Plate" 1, 1 "Frame" 2, 2 "C4" 3, 3 # # --- BC --- # *BC_SYMMETRY XY, 0, 0, 0, 0.0001 *BC_MOTION "Frame" 2 P, 2, XYZ, XYZ # # --- CONTACT --- # *CONTACT 1 ALL, 0, ALL, 0, 0.0, 1.0e14 # # --- DEACTIVATE C4 --- # *ACTIVATE_ELEMENTS "C4" 1, P, 3, 0, 2.0e-4 *END