"Optional title"
mid, $\rho$, $E_1$, $E_2$, $G_{12}$, $\nu_{12}$
$E_3$, $G_{13}$, $G_{23}$, $\nu_{13}$, $\nu_{23}$, $\varepsilon_t$, $\varepsilon_c$, erode
ndir, $\alpha_1$, ..., $\alpha_7$
$c$
Parameter definition
Variable | Description |
---|---|
mid | Unique material identification number |
$\rho$ | Density |
$E_1$ | In-plane Young's modulus (0-direction) |
$E_2$ | In-plane Young's modulus (othogonally to 0-direction) |
$G_{12}$ | In-plane shear modulus |
$\nu_{12}$ | Poisson's ratio |
$E_3$ | Young's modulus in transverse direction |
$G_{13}$ | Transverse shear modulus |
$G_{23}$ | Transverse shear modulus |
$\nu_{13}$ | Poisson's ratio |
$\nu_{23}$ | Poisson's ratio |
$\varepsilon_t$ | Tensile failure strain in fiber direction |
$\varepsilon_c$ | Compressive failure strain in fiber direction |
erode | Element erosion flag |
ndir | Number of fiber directions (up to 7) |
$\alpha_1$, ..., $\alpha_7$ | Fiber directions for failure check (angles relatively the 0-direction) |
$c$ | Strain rate sensitivity parameter |
Description
This is an orthototropic composite model where failure can occur in up to 7 different fiber directions. The stress can be expressed as:
$\boldsymbol{\sigma} = \mathbf{L} : \boldsymbol{\varepsilon} + c \dot{\boldsymbol{\varepsilon}}$
where $\mathbf{L}$ is the tangential stiffness of the material (fourth order tensor). Failure occurs if the tensile or compressive strain in a fiber direction exceeds $\varepsilon_t$ and $\varepsilon_c$, respectively. All deviatoric stresses are set to zero at fiber failure.
Initial fiber directions need to be defined using either INITIAL_MATERIAL_DIRECTION, INITIAL_MATERIAL_DIRECTION_VECTOR or INITIAL_MATERIAL_DIRECTION_WRAP.